|
PLATO (Package for Linear-combination of ATomic Orbitals) is a suite of programs for electronic structure calculations originally designed and written by Andrew Horsfield and Steven Kenny, but now with contributions from others. It receives its name from the choice of basis set (numeric atomic orbitals) used to expand the electronic wavefunctions. PLATO is a code, written in C, for the efficient modelling of materials. It is primarily a tight binding code (both orthogonal and non-orthogonal, allowing for monopole charges and electron spin), but also performs calculations using density functional theory (both in the local-density approximation and the generalized gradient approximation). The program can be applied to systems with periodic boundary conditions in three dimension (crystals) and those with none (molecules). 〔Nguyen-Manh D, Horsfield AP, Dudarev SL PHYSICAL REVIEW B 73 (2006) 020101 "Self-interstitial atom defects in bcc transition metals: Group-specific trends" 〕 〔Smith R, Kenny SD, Sanz-Navarro CF, Belbruno JJ JOURNAL OF PHYSICS-CONDENSED MATTER 15 (2003) S3153-S3169 "Nanostructured surfaces described by atomistic simulation methods"〕 〔Sanville EJ, Vernon LJ, Kenny SD, Smith R , Moghaddam Y , Browne C, Mulheran P PHYSICAL REVIEW B 80 (2009) S3153-S3169"Surface and interstitial transition barriers in rutile (110) surface growth" 〕 〔Gilbert CA, Smith R, Kenny SD, Murphy ST, Grimes RW, Ball JA JOURNAL OF PHYSICS-CONDENSED MATTER 21 (2009) S3153-S3169"A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel" 〕 == Theory == 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「PLATO (computational chemistry)」の詳細全文を読む スポンサード リンク
|